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Conclusions

* Matrix Mobility Controls Protein Degradation in Dry, Glassy State
* B relaxation (ps — ps) are relevant motions, not a relaxation (ks — Ms)
 We have developed a theoretical framework to make the connection between 3
relaxation and protein stability
* B relaxation directly facilitates diffusion of small molecules (reactants)
* [ relaxation facilitates local fluctuations in protein conformation

* Low-Frequency Raman Scattering is Likely Able to Rank-Order Formulations to Within
10% of Relative Degradation Rates
* Estimation based on accumulated light scattering, neutron scattering, and protein
degradation data



Protein Structure Appears to be a
Fine First-Pass Indicator of Protein
Stability, but...

Top panel: a correlation between
protein secondary structure and
protein stability in freeze-dried
solids. (Frequently seen)

Bottom panel: this correlation
breaks down completely for “good”
formulations. Improvements in
stability of > 10X were
accompanied by no change in
secondary structure.

Proteins still degrading when 2°
structure is as good as it gets.
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Neither T, nor a relaxation (ks — Ms) are good predictors of stability

" Left Panel: Neither Tg nor a relaxation (enthalpy relaxation) tracks IgG
aggregation in sucrose formulation

= Right Panel: Protein degradation rates can vary over a factor of 100,000 at a
given matrix Tg value — there is no correlation between matrix Tg and protein

stability
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* B,sis directly related to transport and local relaxation, and reaction
rates.

* <u®>or B, is fundamentally related to B,;, but with slightly different
6 for each material, leading to slight variations in 1/ <u?> vs log(Kyeg )-



Protein stability controlled by B, relaxation? (ps — ns)
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Protein stability controlled by 3,5 relaxation? (us — ms)
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How Does Diffusion Occur in a Glass?

Spatially heterogeneous dynamics

* Most molecules can move only
~1% of their radius on 1 ps
timescale in a glassy state

« Some molecules can move
(hop) ~20% of their radius in 1
pS, even at cryogenic
temperatures
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QENS — Propylene Carbonate
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Quantitative Model
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Why is it that log(Taeg) o log(Tpsa) o< 1/ {u®)?

Craig, J. Agric. Food Chem. 49, (2001)
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Optical Kerr Effect

Optical Kerr effect measures depolarized
vibrations and a time-dependent orientation
correlation function
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Optical Kerr Effect HSC{YO
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Timescales and Amplitudes: OKE and Neutron Scattering

A 0.6

04

0.2

0.0

-0.2

log(T/ps)

-0.4

-0.6

-0.8

-1.0

F T T T T T T T T § 025 [T I I I -

AT
— gl = . Ak X - 0.20

F Y
O
S

L HSC\QYO _ }) 0.15
- O -

@ A % 0.10
B Q@ LAD B

; OE 2
0.05
TR N N N N N R N B
20 25 30 35 40 45 50 55 60 865 150 200 250 300 350
1000/T (K ) T (K)

Timescales for IC and MB barrier crossing motion from NS correspond to librational and
intermediate relaxation in OKE

Temperature dependence of @ (fraction of molecules instantaneously undergoing MB barrier
crossing events) same as that of strength of intermediate relaxation
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Low Frequency Raman should have sufficient
sensitivity to distinguish even slightly different

formulations.
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High-Resolution Functional Microscopy
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FDA Ciritical Path Document (2004)

The product development problems we are
seeing today can be addressed, In part,
through ...collaborative efforts to create a
new generation of performance standards
and predictive tools.

The new tools will ... build on knowledge
delivered by recent advances in science,
such as ... imaging technologies and
materials science.



