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TDLAS-Based “Smart Freeze Dryer”

* Smart Freeze Dryer Concept

— Develop “optimum” process in one laboratory
experiment
* Data from process plus Expert System algorithms
— Current Smart Freeze Dryer operates on MTM
* Evaluate mass flow and product T
— Works well in most cases,

* but not with high concentration of amorphous solid

— TDLAS method uses mass flow monitor for mass
flow and product T

* Should give good results in all cases
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Operation of the Smart Freeze Dryer

Primary Drying
P 1. Select Target Product Temperature, T
Explert iKStem - know collapse temperature /p Pressure
algoritnms - estimate cycle time--> evaluate .
9 “safety margin” Rise Test

\\2. Know T,; Select Chamber Pressure, P

N3. From T, and MTM data, estimate

Optimum Shelf Temperatures

i /

\ Secondary Drying/
2

1. When is 1° Drying over~

2. When is Secondary Drying ?r’./
-residual moisture vs. tim
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Manometric Temperature Measurement (MTM)

% MTM analysis involves quickly isolating the freeze chamber from the
condenser (~25 sec) and analyzing the resultant pressure rise in drying
chamber

s
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Manometric Temperature Measurement (MTM)

“ MTM analysis involves quickly isolating the freeze chamber from the
condenser (~25 sec) and analyzing the resultant pressure rise in drying

chamber
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+Pressure at the sublimation interface (P,_.)
+Mass transfer resistance (R)
«+Temperature at the sublimation interface (T,,)
«~Temperature at vial bottom (T,)
+Vial heat transfer coefficient (K,)
+Heat transfer into the product (dQ/dt)
+Sublimation rate (dm/dt)

MTM is meant to evaluate
“representative” product
temperature during freeze drying,
without placing thermocouples into
product vials

Tang X. C. et al, Pharm. Res.; 22: 685-700 (2005) 6
Gieseler, H. et al, ). Pharm. Sci., 96: 3402-3418 (2007)
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Advantages

/7

s MTM technique gives product temperature of the batch as a whole and does not require
insertion of temperature sensors into the vials

/7

** Works well for many typical formulations
++ Crystalline solutes
% 5% sucrose, ...

/7

s Assessment of critical process attributes
* Mass transfer resistance (Rp)

Vial heat transfer coefficient (Kv)

Sublimation rate (dm/dt)

Disadvantages

/7

** Requires the periodic disruption of the drying process
¢ Not easily installed in manufacturing

/

< MTM may fail in cases of high levels of amorphous solids after creation of a
significant dry layer

X/

s due to water re-absorption, MTM temperature is too low after a few hours of primary
drying
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Temperature and Resistance Comparison Between MTM
and Thermocouples

For Crystalline and high concentration Amorphous

Temp Compare Resistance Compare

Materials Ts Po |Tumm Trc | Rmutm Rgravimetric

Glycine 20 80 -33.6 -32.7| 3.1 3.4
Glycine +37 120 |-23.6 -24 |27 2.6

Mannitol +40 300 |-8.8 -91 |8.0 8.4

Amorphous! +31 143 |-222 17 |83 8.4

Amorphousll +16 85 -33.0 -26 |28 33

e Good agreement for crystalline solids, poor for high concentration
amorphous- due to water re-sorption!

Data from: “Evaluation of Manometric Temperature Measurement (MTM), a Process Analytical Technology Tool in
Freeze Drying: The Impact of Water Re-Absorption”, Tang, Pikal, and Nail, manuscript in preparation 3
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Manometric Temperature Measurement (MTM)

** For amorphous solutes - MTM under-predicts the product temperature, especially
at high amorphous concentration

Sucrose 5% — Small MTM error PVP 5% — Large MTM error
40 -
30:
20
e [J Average g
E T.C. temperature g 0 Average T.C. temperature
qé-,' §_ -10 -
3 g
& 2 o
30 Stee, MTM temperature
. MTM temperature 40 [T E—
“ 0 5 10 15 20 25 30 35 -50 T T T T T T T 1
] 5 10 15 20 25 30 35 40 45

Cycle Time [h] Cycle Time [h]

/

+* Due to water resorption by amorphous solutes partially dried layer

Gieseler, H. et al, J. Pharm. Sci., 96: 3402-3418 (2007) 9
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Re-Sorption of H,O:

Not all water sublimed reaches the chamber

High Concentration Amorphous solid

Pressure Rise with H20 Sorption Effect
1.2
o Experiment
=——=Fit to Theory il
os ' Good fit but low
Z £
o Temperature,
S 06 error, = 3.5° Error
L)
g £°C R
0.4 | Ideal (no H20 sorpt)
1.0 (set) -21.5<-mtMm fiy-> 12.3 (MTM fit)
0.2 H20 Sorption Theory
Blue: Water molecules O 1.53 mtm ity -18.0 (Tc meas) 18.4 (MTMm fit)
Yellow: re-sorption of water molecules from vapor 0
0 5 10 15 20 25 30

10
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Tunable Diode Laser absorptlon spectroscopy (TDLAS)

¢ Tunable Diode Laser Absorption Spectroscopy (TDLAS) is an optical method for detecting
trace concentrations of one or more selected gases mixed W|th other gases.

Front

(— (Sterile Room) \

$ L * Product
Chamber” Chamber

Detectors

Condenser
5/ ~x-70°C

Fiber Optic

Cable From

Laser

Vacuum

o | 1Isolat|on
s Adva ntages: / NS f Valve

- Does not require any probes to be inserted in the
dryer equipment

- Can be implemented on laboratory, pilot and
production scale freeze-dryers

- Continuous, real-time, nonintrusive
11
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| Gas Mass Flow and Velocity

Doppler shifted absorption lineshape measurement

1.2 ,
\ Detector , . —_ | |— frequency shift
O 7 .g 10 Av
\\ 6, S 08
artow " :
D\ g 06
i / N £ ) |
/ N S 02 :
Laser Laser _ | |
0.0 == —
Relative Frequency [cm™]
density velocity mass flow
Joare)av L ave
p = S [o/cn¥] v, (cos§ —cos 6, )ffm/SJ dm/dt=u-p-A [g/]
Determined using absoption line- Determined using Doppler shift, Determined using
strength, pathlength, integrated  speed of light, measurement angle velocity, density and ]’
Area and the laser frequency and transition frequency duct cross-sectlonal

increment area el Lol NIy
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TDLAS Measure of Product Temperature

+* Steady State Heat and Mass Transfer Model

- dQ/dt : heat flow (cal/s)
dQ/dt= A4, -K, -(TS — Tb) dm/dt : sublimation rate

AH,  : water heat of sublimation

= A, : cross sectional area of vials
— AH . - K, : vial heat transfer coefficient
- dQ/ dt S dm / dt T, : shelf temperature
Ty : product temperature at vial bottom
i (AH - (dm/ dt))
A - K
** Product Temperature Determinations = V V

K, = AH, (dm/dt)/( A, (T, - T,))

» Through the combination of TDLAS measurements and a well-established heat and mass
transfer model describing freeze drying, Tb or Kv can be acquired interchangeably.

» Input Kv accounts for all sources of heat & is weighted average of edge and center vials.

» Accurate, non-intrusive determination of batch average product temperature. 13
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TDLAS Measured Temperature is not quite the
“Average Temperature”

 TDLAS determines temperature by input of
sublimation rate (via TDLAS) and vial heat
transfer coefficient, but,

* Edge vials contribute more to the sublimation
rate than their numbers would suggest, since
they sublime faster

TDLAS E c
r," " =r-T, +(1-r)T,,

S 'K.E
(fr.K: '*'ff:'Kf)

J =

14
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The Difference between Number Average Product
Temperature and TDLAS average is small

Formulation MeanTbh Tb TDLAS TDLAS Bias

(TC)
Sucrose-Protein -26.75 -26.65 0.11
Sucrose -31.25 -31.08 0.17
Mannitol -13.91 -13.83 0.08

® Fortunately, the difference (bias) is expected to normally be quite
small, less than the actual experimental error due to errors in

sublimation rate and Kv .
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Estimate = 3% Error in both Kvand Q

_____Formulation __|__Error TDLAST,

Sucrose protein (1:1) 0.71
Sucrose 0.39
Mannitol 1.01

e Expected errors modest
but need to be considered when comparing temperature data

16
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‘ 20ml vial, 3ml fill

O 20ml vial, empty

20ml vial, 3ml fill, TC inside the
vials at the bottom

Door

17
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Comparison of T,: MTM, TDLAS, TC avg

UConn Data: error bars are +1°C for MTM and TDLAS and 0.8°C for Tc
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e Excellent agreement between TDLAS and Tc in all cases
¢ Good agreement between MTM and Tc for Glycine, acceptable for 10% sucrose,
Trehalose, fair for BSA-Sucrose, but poor for PVP except for early data. 18
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Example of TDLAS SMART FD Run on 10% PVP

0 Uncertainty in both TDLAS and TC temperatures = £0.5°C

——T shelf inlet —T collapse —Tp Target e TDLASTb
-5 ——Weighted Ave Tb ——Avg Th Center ——Avg Tb Edge
-10
15 / \ T shelf infet
o / B | — ——
2-20
2
® T collapse
‘é.’_ -25
\__#,i!:_s—-‘===
2 30 / Tp Target é ? i
Th-TDLAS
™ Th-center (TC)
-35
Th-wtave (TC)
-40 Tb-edge (TC)
-45
0 100 200 300 400 500 600 700

Primary Drying Time (min)
eGood agreement between TDLAS and TC temperatures
¢ Sensible cycle output from SMART: objective is Tb-TDLAS within £1°C
of Target once in control at = 200 min 19



Department of

Phamaceutlcal Sciences

TDLAS SMART FD Run Repeatability: 10% PVP

Uncertainty in both TDLAS and TC temperatures = +0.5°C

0
—T collapse —Tp Target ——T shelf inlet #1 —T shelf inlet #2
-5 | e TDLASTb#1 x TDLAS Th #2 ——Weighted Ave Tb #1 ——Weighted Ave Tb #2 [

-10
O
o f .
220
=
® / T collapse
g '25 [' ™ ® ® X
£
2 30 / Tp Target

/ Tb-TDLAS
-35
Th-wt ave (TC€)
-40
-45
0 100 200 300 400 500 600 700

Primary Drying Time (min)
eGood agreement between two TDLAS SMART FD runs for 10% PVP
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TDLAS SMART FD Run on 10% Sucrose:BSA (1:1)

Uncertainty in both TDLAS and TC temperatures = £0.5°C

T shelf inlet == e=»Tcollapse *e*°* Tp Target ® TDLASTh Weighted Average Tb
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£ . L e PR S S—
= -30 °* L 2

-35

-40

45

0 100 200 300 400 500 600 700 800 900

Primary Drying Time (min)

e Good agreement between TDLAS and TC temperatures
¢ Sensible cycle output from SMART: objective is Tb-TDLAS within £1°C
of Target once in control at = 200 min 21
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Summary & Conclusions

*¢ Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a noninvasive method to
continuously measure the water vapor concentration and the vapor flow velocity and
with a given value of vial heat transfer coefficient, can accurately measure product
temperature over the full range of product drying.

¢ Product temperatures measured by TDLAS are accurate and in agreement with
thermocouple data even when MTM fails badly due to the water-resorption phenomena.

+* TDLAS sublimation rates and the calculated product temperatures can be combined with
heat and mass transfer models of freeze drying to provide a SMART Freeze Drying
procedure unencumbered by the inaccuracies of the MTM method.

** TDLAS is applicable to laboratory, pilot and production scale freeze dryers (process scale-

up and process control), thus enabling a SMART freeze drying procedure in
manufacturing.

22
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