Phase Transformations During Freeze-Drying: Potential Implications on Drug Product Performance

Raj Suryanarayanan (Sury), Ph.D. University of Minnesota Minneapolis, MN 55455 surya001@umn.edu

Acknowledgements

Graduate students and post-doctoral fellows

Prakash Sundaramurthi, Ph.D. Dushyant Varshney, Ph.D. Mehak Mehta, Ph.D. Seema Thakral, Ph.D. Sampada Koranne

Acknowledgements

Funding

William and Mildred Peters Endowment Fund International Students Work Opportunities Program, University of Minnesota US Department of Energy

Pharmaceutical freeze-drying

In situ phase transition

- Monitoring them can be a challenge but valuable
- Multiple analytical techniques may be needed
- Excipients use judiciously; more is NOT better
- Potential for interaction between formulation components
 - Influence the physical form

Function-specific solid-state

Ingredient	Common examples	Desired solid-state
Small molecules	Antibiotics, oncolytics	Crystalline
Proteins		Difficult to crystallize
Bulking agents	Mannitol, glycine	Crystalline
Buffers	Phosphate, histidine, citrate	Amorphous
Lyoprotectants	Sucrose, trehalose	Amorphous

Case studies

Trehalose crystallization

- Mannitol hemihydrate
- In situ salt formation
- Salt disproportionation

Protein stabilization

Ability to hydrogen bond with protein?

Varshney et al, Pharm Res, 2009¹⁰

Varshney et al, Pharm Res, 2009

2-Dimensional XRD using high intensity sources

2-D X-ray pattern of crystalline sucrose

C. Nunes, Ph.D. Dissertation, Univ of MN

Trehalose frozen solution

4% Trehalose

Evidence of crystallization of trehalose dihydrate in frozen solutions

d-spacings, Å

Why was trehalose crystallization not reported in the literature?

Phase transition during drying

Sundaramurthi and Suryanarayanan, J Phys Chem Lett, 2010^{15}

Dehydration

Crystaline \rightarrow amorphous transition

Trehalose & mannitol frozen solution

Sundaramurthi and Suryanarayanan, Pharm Res, 27 (2010) 2384

Role of the protein?

Effect of proteins

Sundaramurthi and Suryanarayanan, Pharm Res, 27 (2010) 2384

• Protein inhibits trehalose

crystallization

 This effect is concentration dependent

Sequence of events

Protein inhibits trehalose crystallization

Trehalose is retained amorphous

Amorphous trehalose functions as an effective lyoprotectant and stabilizes the protein

Case studies

- Trehalose crystallization
- Mannitol hemihydrate
- In situ salt formation
- Salt disproportionation

Mannitol

Bulking agent

- Advantages
 - Readily crystallizes
 - High eutectic temperature
- Potential issue
 - Formation of mannitol hemihydrate (MHH) during lyophilization

Mehta et al, Eur J Pharm Biopharm 85 (2013) 207 $_{\rm 24}$

MHH – effect on product stability

Stoichiometric water content - 4.7% w/w

Dehydration and Release of water during storage

- API hydrolysis
- Moisture-induced protein aggregation
- Plasticize amorphous components crystallization. For example – sucrose*

Once formed, MHH is difficult to dehydrate

26

Strategy: Avoid MHH formation during lyophilization.

How?

Mannitol phase formed – appeared to depend on the temperature of crystallization

Hypothesis - The temperature of crystallization (during cooling) governs the mannitol phase crystallizing from solution

Frozen state characterization

Synchrotron XRD – Argonne National Labs

- Real time monitoring during freezing
- High sensitivity

MHH first forms during the freezing step

Prevent MHH formation in lyo product by modifying cycle using ControLyo[™] technology

32

No MHH in the final lyo product

33

Controlling the physical form of mannitol..

- Temperature of mannitol crystallization
- Governed by the ice crystallization temperature

Monitoring the frozen solution

Case studies

- Trehalose crystallization
- Mannitol hemihydrate
- In situ salt formation
- Salt disproportionation

Sequence of events during freeze drying

Crystalline salt

Amorphous salt

Model system

Indomethacin (IMC) with tris as counter ion

0.1 M IMC in 0.15 M tris

pH of the final solution ~7.7

Formation of IMC-tris salt

IR spectra

Intensity (arbitrary counts)

X-ray powder diffraction patterns

Vials loaded in lyophilizer

Before annealing (frozen)

After annealing (frozen)

Dissolution profiles

Summary

• Salt formation during freeze-drying

• Enhanced dissolution

• Annealing - control the physical form of the lyophile

Case studies

- Trehalose crystallization
- Mannitol hemihydrate
- In situ salt formation
- Salt disproportionation

Buffer Crystallization - Schematic

Sodium phosphate buffer

acid + salt of acid \rightarrow buffer

$$NaH_2PO_4 + Na_2HPO_4 \rightarrow pH 7.4$$

 $pH 3.5$

Working Hypothesis

In indomethacin sodium/sodium phosphate buffer system

Selective crystallization of buffer component and the consequent pH shift causes disproportionation of indomethacin sodium salt resulting in formation of poorly soluble indomethacin free acid.

Buffer crystallization & pH shift

FTIR IMC free acid

FTIR IMCNa salt

Lyophiles: FTIR Summary

NaP concentration, mM	IMCNa trihydrate concentration					
_	15 mg/ml	10 mg/ml	5 mg/ml			
	(34.6 mM)	(23 mM)	(11.5 mM)			
100	D	D	D			
50	D	D	D			
35	ND	D	D			
20	ND	ND	D			
10	ND	ND	ND			
D: Disproportionation (IMC acid formation) observed						

ND: No disproportionation (no IMC acid formation) observed

Summary: Low temperature pH measurements

NaP concentration,	IMCNa · 3H ₂ O concentration,	pH at 20 °C ^(a)	pH at -25 °C ^(b)	$\Delta p H^{(c)}$	-
mM	mg/ml (mM)				_
100	-	7.1	2.9	4.2	_
100	10 (23.0)	7.1	2.8	4.3	D
35	-	7.2	3.1	4.1	
35	15 (11.5)	7.2	6.7	0.5	
35	10 (23.0)	7.2	5.2	2.0	D
35	5 (34.6)	7.1	5.6	1.5	
10	-	7.2	3.5	3.7	
10	10 (23.0)	7.2	7.4	-0.2	_

Initial pH^(a)

pH after the buffer solution was cooled to -25 °C and held for 2 hours^(b) $\Delta p H^{(c)} = p H^{(a)} - p H^{(b)}$

Maximum error in pH measurements is ± 0.1

• pH shift during freezing causes disproportionation

DSC - Prelyophilization Solutions

 Absence of IMCNa crystallization exotherm in systems that undergo disproportionation

Low temperature XRD - Prelyophilization Solutions

Conclusions

- Disproportionation of IMCNa due to selective crystallization of buffer component $(Na_2HPO_4 \cdot 12H_2O)$ and the consequent pH shift
- Disproportionation is dependent on concentration of buffer and IMCNa
- The absence of IMCNa crystallization event in DSC heating curves indicates disproportionation

Summary

- Selection of excipient
 - Product stability hinges on excipient functionality
 - Physical form of the excipient can be critical
- Excipient concentration select judiciously
 More is NOT better
- Excipient with multiple functionalities
 Has the potential to simplify the formulation

- Complex interplay of drug and excipients
 - API can influence excipient behavior
 - One excipient can influence the behavior of a second excipient

- Numerous processing steps
 - Potential for phase transitions
 - Monitoring them can be a challenge but very valuable
 - Multiple analytical techniques may be needed