Transfer of a Legacy Product between Two Sites: How to improve Process Robustness by using Mathematical Models

E. Bourles¹, B. Scutella¹, B. Moreau², Y. Mayeresse²

¹ GSK Technical R&D Drug Product Rixensart, Belgium
² Manufacturing Science & Technology, GSK Wavre, Belgium

ISL-FD East Coast Chapter Annual Meeting
12 September, 2017, Cambridge, MA, USA
Introduction

Vaccine Process Description

Bulk → Formulation → Filling → Freeze Drying → Visual inspection → Leak testing

Additional process step
Introduction

Context and situation

➔ Improving the reliability of a freeze drying cycle developed more than 20 years ago, in preparation for transfer of the process to a new manufacturing site

➔ Limited process or physical chemistry data available due to the limitations of technology at the time the product was developed

➔ Formulation characterized by a low critical temperature

Cake aspect variability was observed between batches (edge vial effect) with the original freeze drying cycle

Edge vial defect

Good unit
Introduction

Methodology

- Formulation
  - Before starting the development of the freeze-drying cycle, thermal characterization of the product

- Process development
  - Historically “flash freezing” was applied before primary drying, is it necessary?
  - Characterization of the heat transfer coefficients (Kv) of the different freeze dryers (Manufacturing and pilot)
  - Maximum mass flow rates achievable by the equipment at different pressures (choked flow)

- Simulation
  - Thanks to Rp (Product resistance) and Kv, creation of a design space for the freeze drying cycle and determine optimal process parameters.

- Robustness study at small scale

- Validation at commercial scale
Initially formulation had been characterized with an Eutectic Monitor (Finn-Aqua Aw2)

Electrical resistance of conductive solutions depends on the temperature. Critical temperature was estimated through a shift in the heating curve.

Critical temperature ≈ -38°C
Formulation re-characterisation for freeze drying

Collapse and Glass Transition temperature determination

Collapse (Tc) and Glass transition (Tg’) temperature measured with a cryomicroscope and DSC.

Collapse temperature = appearance of slight white holes on the sublimation front
The Final Bulk formulation was characterized by a $T_c$ of $-38^\circ C$ and a $T_g'$ of $-38.4^\circ C$.

$T_c$ and $T_g'$ are generally considered as critical for the freeze drying process.

Product temperature has to be maintained below $T_c/T_g'$ during primary drying in order to avoid processing defects such as collapsed cakes.
Process development

Evaluation of the impact of the freezing rate on product potency

Equipment used:
Lyo GT6 STERIS/ Butterfly Valve

3 freezing protocols tested:
- Slow freezing rate (0.5°C/min)
- Standard freezing rate (2°C/min)
- Fast freezing rate (precooled shelves)

Need to keep “flash freezing” to maintain potency
Process development

Characterization of the heat transfer of the pilot and manufacturing freeze-dryers

**Pilot Freeze dryer**: Vial heat transfer coefficient (K\text{v}) vs Pressure (4, 6, 9, 15, 40, 50 Pa \text{Ts 0 and -40 °C})

Gravimetric method (center and edge vials) (Pikal et al., 1984, 2000, Pisano et al., 2011, Hibler et al., 2012)
- 2R Filled vials with water (ca. 1,8ml)
- Place temperature probes in selected vials (Tempris probes)
- Carry out freeze-drying cycle until ~ 25-30% of the total mass has been removed
- Evaluate mass flow rate

\[
\dot{Q} = m \Delta H
\]
- \(\dot{Q}\) [W]: heat flow rate;
- \(m\) [kg s-1]: mass flow rate;
- \(\Delta H\) [J kg-1]: heat of sublimation;

\[
\dot{Q} = K\text{v} A (T_s - T_B)
\]
- \(K\text{v}\) [W m^{-2} K^{-1}]: vial heat transfer coefficient;
- \(A\) [m²]: external cross section area of the vial;
- \(T_s, T_B\) [K]: temperatures of shelf and product.

124 vials weighed at the edge
100 vials weighed in the centre
Process development

Characterization of the heat transfer of the pilot and manufacturing freeze-dryers

Pilot Freeze dryer: Heat flow rate within the shelf

Edge vial effect observed at pressures below 15 Pa due to the radiation from the walls to the vials (Rambathla et al., 2003), and gas conduction in the drying chamber (Pikal et al., 2016, Scutella et al., 2017). The higher the chamber pressure, the lower the difference between “centre” and “edge” vials observed the relative contribution of gas conduction in the total heat flux becomes higher at higher pressures.


Experimental data was fitted with equation described in Pikal et al., 1984

Process development

Characterization of the heat transfer of the pilot and manufacturing freeze-dryers

Commercial freeze dryers: Vial heat transfer coefficient vs Pressure

Original Freeze dryer was composed of 24 shelves
Tot shelf surface: 45 m²
Condenser at the back of the drying chamber
Characterization of the heat transfer of the pilot and manufacturing freeze-dryers

Commercial freeze dryers: Vial heat transfer coefficient vs Pressure

Kv established at 4 and 15 Pa in the Original Manufacturing facility (condenser at the back)

Same batch of vials used for every trial (pilot and manufacturing)
N = 225 vials
New Freeze dryer was composed of 18 shelves
Tot shelf surface: 52 m²
Condenser at the bottom of the drying chamber
Characterization of the heat transfer of the pilot and manufacturing freeze-dryers

Commercial freeze dryers: Vial heat transfer coefficient vs Pressure

Kv established at 4 and 15 Pa in the new Manufacturing facility (condenser at the bottom)

Same batch of vials used for every trial (pilot and manufacturing)
N = 225 vials
Kv in the same range between pilot and manufacturing Freeze dryers at 4 and 15 Pa for center vials
Edge vial effect (Heat flow rate edge/center) seems more important in pilot lyo than at commercial scale at 4 Pa (but high SD are visible). At higher pressure, this difference tends to decrease.
Process development

Maximum sublimation rates achievable by pilot and manufacturing freeze-driers

Procedure described by Searles (2010) was used to achieve this goal

(1) Freeze dryer fully loaded with 2R Vials
(2) Pressure fixed at 4, 6, 9 and 12 pa
(3) Heat the shelves until loss of pressure control

Searles J. (2010), Optimizing the Throughput of Freeze-Dryers Within a Constrained Design Space in Freeze Drying/Lyophilization of Pharmaceutical and Biological Products, 425-440
Process development

Maximum sublimation rates achievable by pilot and manufacturing freeze-dryers

Full curve in the new commercial facility
Comparison between the original and the new manufacturing equipment

Differences noted between the 2 manufacturing equipments:

- Original equipment starts to lose pressure control at much lower shelf temperature than the new one
- Pilot scale freeze dryer loses pressure control earlier than the new commercial equipment
Design space was constructed at small scale according to the method described by Hardwick and Nail., 2010, Mockus et al., 2011. Knowing collapse temperature, following process parameters were selected to keep product temperature at around -40°C during the cycle (2°C below Tc).


Validation of the selected process parameters at pilot scale

Experimental run for standard cycle

- Robustness study (n= 2500 placebo vials)
- Use of Lyotrack instrument to evaluate sublimation duration (Mayeresse, 2007), with Temris probes placed at the edge and center of the shelves

All probes (edge and center) below collapse temperature with selected parameters. Sublimation ended before start of secondary drying

Validation of the selected process parameters at pilot scale

Experimental run for standard cycle

- Robustness study (n= 2500 placebo vials)
- Use of Lyotrack instrument to evaluate sublimation duration (Mayeresse et al., 2007), with Tempris probes placed at the edge and center of the shelves

<table>
<thead>
<tr>
<th>Shelf temperature (°C)</th>
<th>Pressure (Pa)</th>
<th>Sublimation Duration (hrs)(full saturation of the chamber)</th>
<th>Moisture content (%) EDGE FRONT VIALS (N=10)</th>
<th>Moisture content (%) CENTER VIALS (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32</td>
<td>5</td>
<td>19</td>
<td>1.33 (+/-0.05)</td>
<td>0.95 (+/-0.05)</td>
</tr>
</tbody>
</table>
Validation of the selected process parameters at manufacturing scale

Commercial scale engineering runs

- Full load with placebo
- New freeze-drying cycle
- No capping, quick visual inspection for shortlisted shelves
- Tools: wireless probes, condenser outlet temperature

Output:

- Product temp. Sublimation endpoint
- Thermal mapping
Validation of the selected process parameters at manufacturing scale

• Cycle used in the original manufacturing unit was modified as follow: $T_s = -1.5^\circ C / P^o -20\mu b$

Edge effect is still visible but with minor impact $\Rightarrow$ rejection rate of the batch below 1%
Conclusion

- **Concrete benefit for the company:**
  - Validation batches with full rationale for freeze drying cycle
  - Rejection rate improvements ➔ Increased yield
  - Large scale trials and surface/response modeling allow to minimize full scale technical trials ➔ Reduced cost transfer
  - Heat transfer and capability of the freeze-dryers permit a good process mapping of the equipment.
Acknowledgements

• GSK Technical Research and Development:
  • Alice Loper and Stephane Godart
  • TRD Belgium Lyo Team: Vincent Ronsse, Olivier Despas, Alain Philippart

Erwan BOURLES, Bernadette SCUTELLA, Benoît MOREAU, Yves MAYERESSE, are employees of the GSK group of companies.
Thank You