Thermostable Lyophilized Ebola Vaccine Formulations

Carly Fleagle Chisholm, PhD

University of Colorado - Boulder
Center for Pharmaceutical Biotechnology
Department of Chemical and Biological Engineering

September 20th, 2016
Cold chain requirements for vaccines

- Current licensed vaccines require transport and storage under a tightly-controlled cold chain
- Cold chain requirements are costly and particularly difficult to maintain in developing countries
Ebola outbreaks occur in countries where maintaining the cold chain is challenging.

2014 Ebola outbreak in West Africa
Total cases = 28,652 Total deaths= 11,325
No licensed vaccines against Ebola virus infections are currently available.

We need a thermally stable vaccine!
Lyophilization can be used to develop thermostable vaccines and could eliminate the need for a cold chain.
Freezing-induced aggregation: A challenge for lyophilization of adjuvant-containing vaccines

Freezing typically causes aggregation of aluminum salt particles in vaccine formulations and can lead to losses in vaccine efficacy

Clausi et al., J. Pharm. Sci., Vol. 97, (6), 2008
Aggregation of aluminum salt adjuvants during freezing can be avoided by using high concentrations of glass-forming excipients or faster cooling rates.

Clausi et al., J. Pharm. Sci., Vol. 97, (6), 2008
Formulations of the key antigen, Ebola glycoprotein, were prepared in liquid and lyophilized forms.

Vaccine Formulation

- 0.1 mg/mL Ebola glycoprotein
- 10 mM ammonium acetate pH 7
- 9.5% (w/v) trehalose
- ± 0.5 mg/mL aluminum hydroxide (alum)

- Lyophilized using fast cooling
- Vaccine stability was tested after 12 weeks of incubation at 40°C
- Vaccine potency was determined by measurement of antibody responses against Ebola glycoprotein in mouse models

Feldmann et al. 1999
Ebola glycoprotein is thermally unstable in liquids
Protein aggregation and degradation was minimized in lyophilized Ebola glycoprotein vaccine formulations.
Minimal aggregation of alum particles was observed after lyophilization of Ebola vaccine formulations.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Mean particle diameter (ESD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid E-GP + alum</td>
<td>2.7 ± 0.1 µm</td>
</tr>
<tr>
<td>Lyo E-GP + alum</td>
<td>4.7 ± 0.1 µm</td>
</tr>
</tbody>
</table>

*Particle size was determined using microflow digital imaging with FlowCAM®
Near-native tertiary structure of Ebola glycoprotein was retained in all lyophilized formulations even after 12 weeks of incubation.
Ebola vaccines are equally potent in liquid and lyophilized forms
More importantly, lyophilized Ebola glycoprotein vaccines are stable for 12 weeks at 40°C.
Conclusions

- Using high trehalose concentrations and fast cooling, aggregation of aluminum salt particles can be avoided in lyophilized Ebola vaccines
- Lyophilized Ebola vaccines are stable at 40°C eliminating the need for a cold chain
Acknowledgments

University of Colorado- Boulder
Theodore Randolph
Taek Jin Kang, Dongguk University-Seoul
Milly Dong
Kasey Lewis

University of Hawaii- Manoa
Axel Lehrer

Oreola Donini
Funded by Soligenix, Inc.